

Feb 9-7:43 AM

$$K_{0} = \frac{1}{2}mV^{2}$$
 $K_{F} = \frac{1}{2}m(\frac{1}{2}V) + \frac{1}{2}m(\frac{1}{2}V)$
 $K_{F} = \frac{1}{4}mV^{2}$
 $K_{0} \neq K_{F} = 0$
 $K_{0} \neq K_{0} \neq 0$
 $K_{0} \neq 0$
 K

We consider billiard balls, steel balls (Newton's cradle) collisions to be elastic. However, in real life the elastic collisions are somewhere inbetween, as shown below.

Nov 28-10:31 AM

$$\int_{-1}^{1} \frac{APFA}{GNOFR} = \int_{-1}^{1} \frac{1}{I} =$$

Feb 9-8:17 AM

Dec 3-1:58 PM

HW problems.

1. Find the momentum and the velocity of the 0.5 kg ball after the collision.

Dec 3-1:59 PM

$$\frac{J_{BN} = \frac{1}{2}(2000)(0.010)}{J_{BN} = 10 \text{ N.5}}$$

$$\frac{J_{NS} = \Delta P}{-10} = P_F - 6$$

$$\frac{J_{PF} = -4 \text{ kg. sj.}}{J_{NS}}$$

Feb 9-8:34 AM

2. Two air pucks approach each other, stick together and then travel due east as shown below. Find the initial velocity of puck A.

Dec 3-2:01 PM

A group of astronauts go for a space walk (EVA) and form a circle outside of the space craft.

Simultaneously the astronauts begin to toss a bunch of balls to one another but always to the person on their left. What happens to the circular formation?

Feb 9-8:45 AM

Feb 9-9:01 AM

