

Dec 5-7:47 AM

(53) Do	OVER
	Dec 5-7·59 AM

Dec 5-8:03 AM

$$Q_{x} = \frac{m_{3}q\sin 40^{2}}{m_{1} + m_{2} + m_{3}}$$

$$Q_{x} = \frac{m_{1}q\sin 40^{2}}{m_{1} + m_{2} + m_{3}}$$

$$Q_{x} = \frac{m_{2}q\sin 40^{2}}{m_{2} + m_{2}}$$

$$Q_{x} = \frac{m_{2}q\sin 40^{2}}{m_{2} + m_{3}q\sin 40^{2}}$$

$$Q_{x} = \frac{m_{2}q\sin 40^{2}}{m_{2} + m_{3}q\sin 40^{2}}$$

$$Q_{x} = \frac{m_{2}q\sin 40^{2}}{m_{3}q\sin 40^{2}}$$

$$Q_{x} = \frac{m_{2}q\sin 40^{2}}{m_{3}q\cos 40^{2}}$$

$$Q_{x} = \frac{m_{2}q\sin 40^{2}}{m_{3}q\cos 40^{2}}$$

$$Q_{x} = \frac{m_{2}q\cos 40^{2}}{m_{3}q\cos 40^{2}}$$

$$Q_{x} = \frac{m_{2}q\cos 40^{2}}{m_{3}q\cos 40^{2}}$$

$$Q_{x} = \frac{m_{2$$

- **Q2.** Calculate how much mass we need to add to m_2 , so $a_x = 0$?
- **Q3.** The original system started from rest and it was in motion for 2 seconds. What was its velocity at that moment?
- **Q4.** Describe the motion of the system right after we add the additional mass to m_2 an instant after 2 seconds in motion. Connect your answer with Newton's laws.
- **A2:** We should add 32.8 kg, so $F_{net(x)} = 0$, therefore $a_x = 0$.

Dec 5-8:24 AM